Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biogenic particles originating in the ocean’s well-lit, shallow layer help regulate Earth's climate by absorbing carbon dioxide from the atmosphere and subsequently sinking to the ocean’s depths. Subtropical gyres are the largest ocean habitats on Earth and are characterized by year-round high light, warm temperatures, and low supply of nutrients. However, even in persistently these low-nutrient regions, conditions vary on multiple temporal and spatial scales, making low-frequency observations—even monthly—difficult to interpret.more » « less
-
Abstract Uncertainties in the temporal and spatial patterns of marine primary production and respiration limit our understanding of the ocean carbon (C) cycle and our ability to predict its response to environmental changes. Here we present a comprehensive time‐series analysis of plankton metabolism at the Hawaii Ocean Time‐series program site, Station ALOHA, in the North Pacific Subtropical Gyre. Vertical profiles of gross oxygen production (GOP) and community respiration (CR) were quantified using the18O‐labeled water method together with net changes in O2to Ar ratios during dawn to dusk in situ incubations. Rates of14C‐bicarbonate assimilation (14C‐based primary production [14C‐PP]) were also determined concurrently. During the observational period (April 2015 to July 2020), euphotic zone depth‐integrated (0–125 m) GOP and14C‐PP ranged from 35 to 134 mmol O2m−2d−1and 18 to 75 mmol C m−2d−1, respectively, while CR ranged from 37 to 187 mmol O2m−2d−1. All biological rates varied with depth and season, with seasonality most pronounced in the lower portion of the euphotic zone (75–125 m). The mean annual ratio of GOP to14C‐PP was 1.7 ± 0.1 mol O2(mol C)−1. While previous studies have reported convergence of GOP and14C‐PP with depth, we find a less pronounced vertical decline in the GOP to14C‐PP ratios, with GOP exceeding14C‐PP by 50% or more in the lower euphotic zone. Variability in CR was higher than for GOP, driving most of the variability in the balance between the two.more » « less
-
Abstract Siderophores are strong iron‐binding molecules produced and utilized by microbes to acquire the limiting nutrient iron (Fe) from their surroundings. Despite their importance as a component of the iron‐binding ligand pool in seawater, data on the distribution of siderophores and the microbes that use them are limited. Here, we measured the concentrations and types of dissolved siderophores during two cruises in April 2016 and June 2017 that transited from the iron‐replete, low‐macronutrient North Pacific Subtropical Gyre through the North Pacific Transition Zone (NPTZ) to the iron‐deplete, high‐macronutrient North Pacific Subarctic Frontal Zone (SAFZ). Surface siderophore concentrations in 2017 were higher in the NPTZ (4.0–13.9 pM) than the SAFZ (1.2–5.1 pM), which may be partly attributed to stimulated siderophore production by environmental factors such as dust‐derived iron concentrations (up to 0.51 nM). Multiple types of siderophores were identified on both cruises, including ferrioxamines, amphibactins, and iron‐free forms of photoreactive siderophores, which suggest active production and use of diverse siderophores across latitude and depth. Siderophore biosynthesis and uptake genes and transcripts were widespread across latitude, and higher abundances of these genes and transcripts at higher latitudes may reflect active siderophore‐mediated iron uptake by the local bacterial community across the North Pacific. The variability in the taxonomic composition of bacterial communities that transcribe putative ferrioxamine, amphibactin, and salmochelin transporter genes at different latitudes further suggests that the microbial groups involved in active siderophore production and usage change depending on local conditions.more » « less
-
Abstract Cell size is broadly applied as a convenient parameterization of ecosystem models and is widely applicable to constrain the activities of organisms spanning large size ranges. However, the size structure of the majority of the marine picoplankton assemblage is narrow and beneath the lower size limit of the empirical allometric relationships established so far (typically >1 μm). We applied a fine‐resolution (0.05 μm increments) size fractionation method to estimate the size dependence of metabolic activities of picoplankton populations in the 0.10–1.00 μm size interval within the surface North Pacific Subtropical Gyre microbial assemblage. Group‐specific carbon retained on each filter was quantified by flow cytometric conversion of light scatter to cellular carbon quotas. Median carbon quotas were 25.7, 22.6, and 5.9 fg C cell−1for populations of the picocyanobacteriumProchlorococcus, high‐scatter heterotrophs, and low‐scatter heterotrophs, respectively. Carbon‐specific rates of primary production as a function of cell size, using the14C method, and phosphate transport, using33P radiotracers, resulted in negative power scalings (b) within populations ofProchlorococcusand heterotrophs ofb = −1.3 andb = −1.1, respectively. These findings are in contrast to the positive empirical power scaling comprising the broader and larger prokaryote category (b = 0.7) and point to within‐population variability in cell physiology and metabolism for these important microbial groups.more » « less
-
From June to August 2018, the eruption of Kīlauea volcano on the island of Hawai‘i injected millions of cubic meters of molten lava into the nutrient-poor waters of the North Pacific Subtropical Gyre. The lava-impacted seawater was characterized by high concentrations of metals and nutrients that stimulated phytoplankton growth, resulting in an extensive plume of chlorophyll a that was detectable by satellite. Chemical and molecular evidence revealed that this biological response hinged on unexpectedly high concentrations of nitrate, despite the negligible quantities of nitrogen in basaltic lava. We hypothesize that the high nitrate was caused by buoyant plumes of nutrient-rich deep waters created by the substantial input of lava into the ocean. This large-scale ocean fertilization was therefore a unique perturbation event that revealed how marine ecosystems respond to exogenous inputs of nutrients.more » « less
An official website of the United States government
